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Background Many meta-analyses contain only a small number of studies, which
makes it difficult to estimate the extent of between-study heterogen-
eity. Bayesian meta-analysis allows incorporation of external evidence
on heterogeneity, and offers advantages over conventional random-
effects meta-analysis. To assist in this, we provide empirical evidence
on the likely extent of heterogeneity in particular areas of health care.

Methods Our analyses included 14 886 meta-analyses from the Cochrane
Database of Systematic Reviews. We classified each meta-analysis accord-
ing to the type of outcome, type of intervention comparison and med-
ical specialty. By modelling the study data from all meta-analyses
simultaneously, using the log odds ratio scale, we investigated the
impact of meta-analysis characteristics on the underlying between-
study heterogeneity variance. Predictive distributions were obtained
for the heterogeneity expected in future meta-analyses.

Results Between-study heterogeneity variances for meta-analyses in which
the outcome was all-cause mortality were found to be on average
17% (95% CI 10–26) of variances for other outcomes. In meta-
analyses comparing two active pharmacological interventions, het-
erogeneity was on average 75% (95% CI 58–95) of variances for
non-pharmacological interventions. Meta-analysis size was found
to have only a small effect on heterogeneity. Predictive distributions
are presented for nine different settings, defined by type of outcome
and type of intervention comparison. For example, for a planned
meta-analysis comparing a pharmacological intervention against
placebo or control with a subjectively measured outcome, the pre-
dictive distribution for heterogeneity is a log-normal (�2.13, 1.582)
distribution, which has a median value of 0.12. In an example of
meta-analysis of six studies, incorporating external evidence led to
a smaller heterogeneity estimate and a narrower confidence interval
for the combined intervention effect.
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Conclusions Meta-analysis characteristics were strongly associated with the
degree of between-study heterogeneity, and predictive distributions
for heterogeneity differed substantially across settings.
The informative priors provided will be very beneficial in future
meta-analyses including few studies.

Keywords Meta-analysis, heterogeneity, intervention studies, Bayesian analysis

Background
Systematic reviews of randomized trials provide the
best evidence on the effectiveness of health-care inter-
ventions. Within systematic reviews, results from
multiple studies are often combined statistically in a
meta-analysis. Differences among the results com-
bined in a meta-analysis arise through genuine differ-
ences in the study designs, through differences in the
conduct of the research and deviation from the
planned designs (biases) and through random vari-
ation. In the presence of heterogeneity, it is often
considered appropriate to perform a random-effects
meta-analysis, in which both the underlying average
intervention effect and the between-study heterogen-
eity are estimated.1,2 Many meta-analyses contain
only a small number of studies, and this makes it
difficult to estimate the between-study variance. A
conventional random-effects meta-analysis does not
acknowledge the (often substantial) uncertainty in
the estimate of the between-study variance.3 A
Bayesian meta-analysis offers the benefits of allowing
appropriately for this uncertainty, offering a flexible
framework for more complex meta-analyses and facil-
itating prediction of effects in future studies.4–7

Ideally, a Bayesian meta-analysis should be informed
by a realistic prior distribution for the between-study
variance, based on external evidence.8

In principle, meta-analysts could gather evidence on
the extent of heterogeneity observed in previous
meta-analyses in similar settings, and construct an
informative prior distribution for the degree of hetero-
geneity in their own meta-analysis. However, this is
unrealistic in practice. It would therefore be useful if
informative prior distributions relevant to a variety of
settings were constructed in advance and made avail-
able for all to use.

By modelling the data from a large collection of meta-
analyses, we have estimated the influence of meta-
analysis characteristics on between-study heterogeneity
and have obtained predictive distributions for the
degree of heterogeneity expected in particular settings.
The distributions presented can be used directly in new
meta-analyses as ‘off-the-shelf’ prior distributions.

Methods
The contents of the CDSR (Issue 1, 2008) were provided
to us by the Nordic Cochrane Centre for use in this

research. Many Cochrane reviews include multiple
meta-analyses, which correspond to comparisons of dif-
ferent pairs of interventions or the examination of dif-
ferent outcomes within the same overall research topic.
For example, a review evaluating antidepressants could
report separate meta-analyses comparing each of sev-
eral antidepressants against placebo, with respect to
depression symptoms and adverse effects. In our ana-
lyses, we included all meta-analyses of binary
outcomes, which reported data from two or more stu-
dies. In some cases, review authors had entered data for
a set of studies but had chosen not to combine results
numerically in a meta-analysis. We included these
‘potential meta-analyses’ as meta-analyses, to maxi-
mize the amount of information available, and because
the degree of between-study heterogeneity may have
influenced the decision not to perform a meta-analysis.

Our focus was on overall heterogeneity in each
meta-analysis, and therefore study data were pooled
across subgroups, where these had been defined by
review authors. For example, subgroups might be
defined by geographical location, or by dose of treat-
ment. In some Cochrane reviews, the ‘subgroups’
defined within a meta-analysis were not mutually
exclusive, and the same data from a study were
included in more than one ‘subgroup’. We therefore
checked for duplications by matching study identi-
fiers, and extracted data for only the first occurrence
of each study in each meta-analysis.

Classification process
For each meta-analysis in each systematic review, we
classified the type of outcome, the types of intervention
compared and the medical specialty to which the re-
search question related. The details of this initial stage
of work are described elsewhere.9 The outcomes, inter-
ventions and medical specialties were assigned to fairly
narrow categories (see Table 1 footnote), which we
grouped together later in our analyses. We based out-
come categories on those used by Wood10 and those
proposed by the Foundation for Health Services
Research.11 To classify interventions, we used cate-
gories based on the Health Research Classification
System developed by the UK Clinical Research
Collaboration (UKCRC).12 For medical specialties, we
used a taxonomy from the UK National Institute for
Health and Clinical Excellence (NICE).13 Our initial
sets of categories were modified after testing the
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classification process in a pilot study that included 50
systematic reviews.

Wherever possible, outcomes and interventions were
classified on the basis of short text descriptions

provided by the review authors, together with the
title of the systematic review. Where additional infor-
mation was required, we consulted descriptions of the
outcomes, interventions and participants in the five
studies receiving greatest weight in the meta-analysis.
Medical specialties were classified usually on the basis
of the title of the systematic review, or on the review
abstract if clarification was needed.

Statistical analysis
We used hierarchical models to analyse the study data
from all included meta-analyses simultaneously, while
investigating the effects of meta-analysis characteris-
tics on the level of between-study heterogeneity.
Within each meta-analysis, a random-effects model
with binomial within-study likelihoods was fitted to
the binary outcome data from each study on the log
odds ratio (OR) scale. Across meta-analyses, a hierarch-
ical regression model was fitted to the log-transformed
values of underlying between-study heterogeneity vari-
ance �2, assuming a normal distribution for the residual
variation. As covariates in the regression model, we
included indicators of outcome type, intervention com-
parison type and medical specialty, and number of stu-
dies in the meta-analysis (log-transformed, as a
continuous covariate). Heterogeneity was assumed to
vary across meta-analyses within pair-wise compari-
sons with separate variances for different outcome
types. Heterogeneity was also assumed to vary across
pair-wise comparisons, with separate variances for dif-
ferent intervention comparison types. The algebraic
form of the models is provided in the Supplementary
Appendix S1.

All models were fitted within a Bayesian frame-
work, and estimation was achieved using the
WinBUGS software.14 Results were based on 50 000
iterations following a burn-in of 5000 iterations,
which was sufficient to achieve convergence. Model
selection was performed using the deviance informa-
tion criterion (DIC).15 We declared N(0,10) priors for
all regression coefficients, and declared Uniform(0,2)
priors for the standard deviations of the random
effects representing variation in heterogeneity
across outcomes within comparisons and across
pair-wise comparisons.

On the basis of the findings from the above ana-
lyses, we chose to focus on a small set of three out-
come types and three intervention comparison types.
For each pair-wise combination among these, we ob-
tained a predictive distribution for the between-study
heterogeneity �2

new expected in a future meta-analysis
in this setting. A log-normal distribution was fitted to
each predictive distribution, using the posterior mean
and standard deviation for log �2

new

� �
. This process pro-

vides parametric distributions approximating the pre-
dictive distributions obtained from the full Bayesian
model, so they can be easily summarized and reported
for use in future meta-analyses.

Table 1 Distribution of outcome types, intervention com-
parison types and medical specialty types among the 14 886
meta-analyses in the data set

Number (%) of
meta-analyses

Outcome typesa

All-cause mortality 1132 (8)

Semi-objective outcomesb 4586 (31)

Subjective outcomesc 9106 (61)

Intervention comparison types

Pharmacological vs placebo/control 5599 (38)

Pharmacological vs pharmacological 4118 (28)

Non-pharmacologicald vs placebo/
control

2412 (16)

Non-pharmacologicald vs
non-pharmacologicald

2442 (16)

Non-pharmacologicald vs
pharmacological

315 (2)

Medical specialty

Cancer 689 (5)

Cardiovascular 1192 (8)

Central nervous system/
musculoskeletal

1210 (8)

Digestive system 1464 (10)

Infectious diseases 780 (5)

Mental health and behavioural
conditions

1977 (13)

Obstetrics and gynaecology 3905 (26)

Pathological conditions 414 (3)

Respiratory diseases 1310 (9)

Urogenital 932 (6)

Other specialties 1013 (7)

aSixty-two meta-analyses were excluded where the outcome did
not fit into any of our pre-defined categories and was classified
as ‘Other’.
bSemi-objective outcomes include cause-specific mortality,
major morbidity event, composite mortality/morbidity, obstetric
outcomes, internal structure, external structure, surgical device
success/failure, withdrawals/drop-outs, resource use, hospital
stay/process measures.
cSubjective outcomes include pain, mental health outcomes,
dichotomous biological markers, quality of life/functioning,
consumption, satisfaction with care, general physical health,
adverse events, infection/new disease, continuation/termination
of condition being treated, composite endpoint (including at
most one mortality/morbidity endpoint).
dNon-pharmacological interventions include interventions
classified as medical devices, surgical, complex, resources and
infrastructure, behavioural, psychological, physical, complemen-
tary, educational, radiotherapy, vaccines, cellular and gene and
screening.
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Results
Characteristics of data set
The data set includes 14 886 meta-analyses from 1991
Cochrane reviews, containing data from 77 237 indi-
vidual studies in total. Table 2 shows the structure of
the data set. The number of meta-analyses per
pair-wise comparison ranged from 1 to 43 with a
median of 2. The median number of studies included
in a meta-analysis was 3 with range 2–294 (a
meta-analysis had to contain at least two studies to
be eligible). The median number of participants in the
studies in the meta-analyses varied substantially,
from studies of only two individuals to very large
studies containing over a million individuals. In
8595 (57%) of the meta-analyses, the method of mo-
ments estimate �̂2 for between-study heterogeneity
was set to 0. Figure 1 shows the distribution of the
non-zero estimates. We note that zero estimates �̂2 are
often obtained when true between-study heterogen-
eity �2 is small but positive.

Table 1 presents the frequencies of different outcome
types, intervention comparison types and medical
specialties among the meta-analyses included in this
data set. We regarded all-cause mortality as the most
objectively assessed outcome, and this was used in 8%
of the meta-analyses. All other outcome categories were
grouped together as ‘semi-objective outcomes’ or ‘sub-
jective outcomes’; the details are given in Table 1. Each
meta-analysis compares a pair of interventions, which
were classified separately according to a list of 17 cate-
gories (pharmacological, psychological, surgical etc.).9

In this article, we group these into broader categories:
pharmacological, non-pharmacological and placebo/
control. Meta-analyses comparing pharmacological
interventions against placebo or control were the
most frequent (38%), whereas meta-analyses compar-
ing pharmacological against pharmacological interven-
tions (i.e. head-to-head comparisons) formed the
second largest group (28%). The frequency of different
medical specialties is shown in Table 1. Obstetrics and
gynaecology was the most frequently occurring cat-
egory (26% of meta-analyses).

Comparing heterogeneity across
meta-analysis types
Ratios of heterogeneity variances �2 between different
types of meta-analysis are presented in Table 3.

Meta-analyses in which the outcome was all-cause
mortality displayed substantially lower between-study
heterogeneity than other meta-analyses; the ratio of
variances was estimated as 0.17 (95% CI 0.10–0.26).
Heterogeneity was substantially lower in meta-
analyses assessing all-cause mortality compared with
those assessing subjective outcomes, and also lower in
meta-analyses of semi-objective outcomes than in
meta-analyses of subjective outcomes.

In terms of intervention types, heterogeneity was
on average lowest in pharmacological vs pharma-
cological meta-analyses, with evidence of a difference
compared with meta-analyses involving non-
pharmacological interventions. Heterogeneity also
tended to be lower in meta-analyses comparing
pharmacological vs placebo/control than in non-
pharmacological meta-analyses, but the confidence
interval for the ratio included the null value 1.

Overall, there was no evidence of differences in
between-study heterogeneity among medical areas
(inclusion of medical specialty indicators led to
worse model fit, as assessed by the DIC).
Meta-analysis size was found to have a small effect
on between-study heterogeneity; the �2 ratio corres-
ponding to a doubling in the number of studies was
estimated as 1.11 (95% CI 1.03–1.18).

To explore sensitivity to our choices in constructing
the data set, we performed repeats of the primary
analysis reported in Table 3, within three different
versions of the data set: firstly, we excluded 529 ‘po-
tential meta-analyses’ which had chosen not to pool
results; second, we used data from the first subgroup
only, for 5186 meta-analyses including subgroups;
third, we excluded 5081 meta-analyses including
only two studies. In each analysis, the central esti-
mates for the ratios comparing different types of
meta-analyses remained similar to those reported,
whereas the 95% CIs widened to reflect the smaller
sample size.

Predictive distributions for heterogeneity in
future meta-analyses
We first reported a predictive distribution for
between-study heterogeneity in a future meta-
analysis in a general setting. This was obtained from
a hierarchical model fitted to all meta-analyses in the
data set, including no meta-analysis characteristics as
covariates. The fitted distribution for �2

new was

Table 2 Structure of data set: number of pair-wise comparisons per review, meta-analyses per comparison, studies per
meta-analysis and size of study

N Min
25%

Percentile Median
75%

Percentile Max

Number of comparisons per review 1991 reviews 1 1 1 2 20

Number of meta-analyses per comparison 3884 comparisons 1 1 2 5 43

Number of studies per meta-analysis 14 886 meta-analyses 2 2 3 6 294

Sample size 77 237 studies 2 50 102 243 1 242 071
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Table 3 Ratios of variances representing comparisons of between-trial heterogeneity �2 among different types of
meta-analysis, according to intervention comparison, outcome, medical specialty and size (number of trials)

Comparisons based on meta-analysis characteristics Ratio of �2 (95% CI)

Outcome typesa

All-cause mortality / All other outcomes 0.17 (0.10–0.26)

All-cause mortality / Subjectiveb outcomes 0.14 (0.07–0.22)

Semi-objectiveb outcomes / Subjectiveb outcomes 0.45 (0.37–0.55)

Intervention comparison typesc

Pharmacological vs placebo/control / Non-pharmacologicalb (any) 0.94 (0.76–1.13)

Pharmacological vs pharmacological / Non-pharmacologicalb (any) 0.75 (0.58–0.95)

Medical specialty typesd

Cancer / Obstetrics and gynaecology 0.95 (0.65–1.35)

Cardiovascular / Obstetrics and gynaecology 0.55 (0.40–0.75)

Central nervous system or musculoskeletal disorders / Obstetrics and gynaecology 0.85 (0.60–1.16)

Digestive system / Obstetrics and gynaecology 1.23 (0.93–1.58)

Infectious diseases / Obstetrics and gynaecology 1.46 (1.05–1.96)

Mental health and behavioural conditions / Obstetrics and gynaecology 1.03 (0.80–1.31)

Pathological conditions / Obstetrics and gynaecology 1.56 (1.09–2.33)

Respiratory diseases / Obstetrics and gynaecology 0.70 (0.51–0.98)

Urogenital / Obstetrics and gynaecology 1.81 (1.28–2.59)

Other specialties / Obstetrics and gynaecology 1.14 (0.86–1.51)

Number of studies in meta-analysis: ratio corresponding to 5-study increasee 1.02 (1.00–1.04)

aAnalysis adjusted for intervention comparison type and medical specialty type.
bSubjective and semi-objective outcomes and non-pharmacological interventions defined in Table 2.
cAnalysis adjusted for outcome type and medical specialty type.
dAnalysis adjusted for intervention comparison type and outcome type.
eAnalysis adjusted for intervention comparison type, outcome type and medical specialty type.
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Figure 1 Distribution of non-zero estimates for between-study heterogeneity variance (�̂2), plotted on log scale
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estimated as log-normal (�2.56,1.742), which has
median 0.08 and 95% range 0.003–2.34 on the
untransformed �2 scale.

Table 4 summarizes a set of log-normal distributions
fitted to the predictive distributions for the between-
study heterogeneity expected in a future meta-
analysis in each of nine different settings, defined
by outcome type and intervention comparison type.
The differences among these fitted distributions
reflect the findings reported in Table 3. There are sub-
stantial differences across the three outcome types;
the fitted distributions for meta-analyses of an
all-cause mortality outcome have much lower me-
dians and 97.5% quantiles, whereas the predictive dis-
tributions for a subjective outcome have the highest
medians and 97.5% quantiles. Differences among the
three types of intervention comparison considered are
smaller, but show a consistent pattern within each
outcome type: the lowest levels of heterogeneity are
expected in meta-analyses of pharmacological vs
pharmacological comparisons and the highest levels
in comparisons that assess a non-pharmacological
intervention.

Figure 2 illustrates the predictive distributions for
between-study heterogeneity in two very different set-
tings: a pharmacological vs placebo/control meta-
analysis with an all-cause mortality outcome; and a
non-pharmacological meta-analysis with a subjective
outcome. The empirical distribution obtained from the
full Bayesian model is plotted as a histogram in each
case, whereas the black line represents the fitted
log-normal distribution (as summarized in Table 4).
For a pharmacological vs placebo/control meta-
analysis measuring all-cause mortality, the predictive
distribution for �2

new gives little support to values
above 0.2, whereas the predictive distribution for a
non-pharmacological meta-analysis measuring a sub-
jective outcome gives moderate support to

heterogeneity values up to 1. To illustrate the impli-
cations for variability in ORs, we calculate expected
95% ranges for underlying ORs in pharmacological vs
placebo/control meta-analyses assessing different out-
come types. Based on the median-predicted values for
�2

new (Table 4), we expect ORs with 95% ranges of
0.77–1.29 for all-cause mortality, 0.65–1.54 for
semi-objective outcomes and 0.51–1.97 for subjective
outcomes, assuming a central value of 1.

Application to an example meta-analysis
To illustrate the use of an informative prior for het-
erogeneity, we re-analysed the data from a published
meta-analysis including six studies.16 The meta-
analysis evaluates the effectiveness of granulocyte
(white blood cell) transfusions for treating patients
with neutropenia or neutrophil dysfunction, who are
at high risk of serious infections and death. In a con-
ventional random-effects meta-analysis of these data
(Figure 3), the heterogeneity estimate was high
(�̂2¼ 1.27, I2

¼ 65%) but imprecisely estimated
(Table 5). Since few studies were available, the �̂2

estimate was strongly influenced by the extreme
result from the Higby study, and would reduce to
0.13 if this study were excluded.

Table 5 presents results from a Bayesian meta-
analysis using a vague Uniform (0,5) prior for �.
Estimation was achieved within the WinBUGS soft-
ware,14 and results were based on 50 000 iterations
following a burn-in of 5000 iterations. This analysis
produced an extremely wide interval for �2, and a
correspondingly widened interval for the combined
OR, which reflects the uncertainty in �2. When so
few studies are included, the results are known to
be very sensitive to choice of vague prior for �2,17

and little confidence would be placed in these results.
The granulocyte transfusions meta-analysis evalu-

ated a non-pharmacological intervention with respect

Table 4 Predictive distributionsa obtained for the between-study heterogeneity �2
new in a future meta-analysis, across nine

different settings

Outcome type
Intervention comparison type

Pharmacological vs
Placebo/Control

Pharmacological vs
Pharmacological

Non-pharmacologicalb

(any)

All-cause mortality Log-normal (�4.06,1.452): Log-normal (�4.27,1.482): Log-normal (�3.93,1.512):

median¼ 0.017; 95%
range¼ (0.001–0.30)

median¼ 0.014; 95%
range¼ (0.0008–0.25)

median¼ 0.020; 95%
range¼ (0.001–0.38)

Semi-objectiveb Log-normal (�3.02,1.852): Log-normal (�3.23,1.882): Log-normal (�2.89,1.912):

median¼ 0.049; 95%
range¼ (0.001–1.83)

median¼ 0.040; 95%
range¼ (0.001–1.58)

median¼ 0.056; 95%
range¼ (0.001–2.35)

Subjectiveb Log-normal (�2.13,1.582): Log-normal (�2.34,1.622): Log-normal (�2.01,1.642):

median¼ 0.12; 95%
range¼ (0.005–2.63)

median¼ 0.096; 95%
range¼ (0.004–2.31)

median¼ 0.13; 95%
range¼ (0.005–3.33)

aFitted distributions reported as log-normal �,�2
� �

, where m and � are the mean and SD on the log scale. We also report medians
and 2.5% and 97.5% quantiles on the untransformed scale.
bSubjective and semi-objective outcomes and non-pharmacological interventions defined in Table 2.
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to all-cause mortality, so we used a log-normal
(�3.93, 1.512) distribution as an informative prior dis-
tribution for �2 (Table 4). The simple code for fitting
the model is available in the Supplementary Appendix
S1. When using an informative prior, the central
estimate for heterogeneity reduced to 0.18 (95% CI
0.003–1.70), and the interval for the combined OR
narrowed substantially (Table 5). Since the inform-
ative prior represents our beliefs about likely values

of heterogeneity in this meta-analysis, we would con-
sider these results appropriate as a primary analysis of
the data.

As a contrasting example, we have also re-analysed
the data from a published meta-analysis of six studies
in which the conventional heterogeneity estimate
was low (�̂2¼ 0.02, I2

¼ 6%), but again imprecisely
estimated (Table 5). This meta-analysis evaluated
the effectiveness of the antidepressant nortriptyline

Overall

Vogler

Study

Scali

Herzig

Bow

Higby

Winston

0.42 (0.13–1.34)

0.31 (0.07–1.43)

OR (95% CI)

0.28 (0.01–7.67)

0.31 (0.03–3.39)

1.09 (0.21–5.76)

0.05 (0.01–0.29)

1.57 (0.66–3.73)

.01 .1 1 10

Figure 3 Conventional random-effects meta-analysis combining results from six studies on the effectiveness of granulocyte
(white blood cell) transfusions for prevention of mortality in patients with neutropenia or neutrophil dysfunction16
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Figure 2 Predictive distributions for heterogeneity variance (plotted on log scale) in: (a) pharmacological vs placebo/control
meta-analysis measuring all-cause mortality; (b) non-pharmacological meta-analysis measuring a subjective outcome
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for smoking cessation.18 When performing a Bayesian
meta-analysis using an informative prior for �2, the
central estimate of �2 increased slightly to 0.07
whereas its 95% CI narrowed. This Bayesian
meta-analysis allows appropriately for the imprecision
in �2 and produces a wider interval for the combined
OR in comparison with a conventional random-effects
meta-analysis.

Discussion
Many meta-analyses synthesize the evidence from
only a small number of studies, which makes estima-
tion of the between-study variance difficult. A
Bayesian approach to estimation is particularly bene-
ficial in small meta-analyses, since it allows incorpor-
ation of external evidence on the between-study
variance. In this article, we have analysed a large
database of meta-analyses in order to describe the
predictors of between-study heterogeneity and con-
struct informative prior distributions for the hetero-
geneity variance. We have shown how these priors
can be used in a future meta-analysis, and provided
an example where precision is improved by doing so.

Informative prior distributions for between-study
heterogeneity have been proposed previously. Smith
et al.4 derived an informative prior distribution for
heterogeneity in a binary data meta-analysis by
considering the degree of spread of ORs which could
reasonably be expected. Higgins and Whitehead8 con-
structed a prior distribution for a meta-analysis in
gastroenterology, by fitting an inverse gamma distri-
bution to the heterogeneity parameters of 18 meta-
analyses of similar study types. Pullenayegum20

recently analysed 314 meta-analyses from the CDSR

and developed a joint prior for heterogeneity and
the pooled log OR, allowing the prior for heterogen-
eity to depend on the magnitude of the intervention
effect. In our models, we allowed heterogeneity to
depend only on known meta-analysis characteristics,
in order that the priors can be fully specified in ad-
vance of the analysis and implementation is straight-
forward. The size and breadth of the full CDSR data
set have enabled us to identify important predictors of
heterogeneity and construct a number of priors for
specific meta-analysis types.

A limitation of our work is that the data set only
includes data entered numerically by the systematic
review authors. Meta-analyses reported only in the
text of a systematic review may tend to exhibit
higher between-study heterogeneity, so we expect
our analyses to under-estimate the true levels of
heterogeneity. Second, the data set includes only
meta-analyses from Cochrane reviews, which are not
necessarily representative of meta-analyses in general.
Another limitation is that the classifications of
meta-analysis characteristics were carried out by
only one person, owing to the very large amount of
work involved. In our current work, we have analysed
meta-analyses of binary outcomes only, and the in-
formative priors cannot be applied directly to other
outcome types.

In our analyses, we have modelled total between-
study heterogeneity, which is likely to comprise a
mixture of variation caused by true diversity among
the protocols for the original studies, variation caused
by biases and unexplained variation. Assuming that a
conventional random-effects model will be used in
many future meta-analyses, it is appropriate to focus
on total between-study heterogeneity in our predictive
findings. However, it would be preferable to separate

Table 5 Application to example meta-analyses: comparison of results obtained from conventional and Bayesian approaches
to random-effects meta-analysis

Combined OR
estimate (95% CI)

Heterogeneity variance
estimate �̂2 (95% CI)

Granulocyte (white blood cell) transfusions vs no transfusions. Outcome: all-cause mortality

Conventional random-effects meta-analysis (DerSimonian and Laird
estimation)

0.42 (0.13–1.34) 1.25 (0.04–8.50)a

Bayesian random-effects meta-analysis with Uniform(0,5) prior for � 0.33 (0.03–1.96) 2.74 (0.34–18.1)

Bayesian random-effects meta-analysis with log-normal
(�3.93,1.512) prior for �2

0.48 (0.18–1.01) 0.18 (0.003–1.70)

Nortriptyline vs placebo. Outcome: long-term abstinence (6–12 months) from smoking

Conventional random-effects meta-analysis (DerSimonian and Laird
estimation)

2.26 (1.52–3.37) 0.02 (0–1.86)a

Bayesian random-effects meta-analysis with Uniform (0,5) prior
for �

2.40 (1.28–4.77) 0.13 (0.0003–2.50)

Bayesian random-effects meta-analysis with log-normal
(�2.13,1.582) prior for s2

2.39 (1.50–3.91) 0.07 (0.004–0.64)

aConfidence interval for �2 calculated using Q-profile method.19
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variation attributable to biases from other sources of
between-study variation. In later versions of the
CDSR, this will become possible once the recently
introduced Cochrane risk-of-bias tool21 has been im-
plemented in a large number of systematic reviews.
Our existing hierarchical model for the data from all
available meta-analyses could be extended to incorp-
orate the bias model proposed by Welton et al.22 This
would allow us to adjust for the bias attributable to a
potential source (e.g. inadequate allocation conceal-
ment) in all studies judged to be at high risk. In prin-
ciple, the model could be extended further to adjust
for multiple sources of bias simultaneously. Results
from this analysis could provide useful information
about the degree to which one would expect
between-study heterogeneity to reduce, on average,
if meta-analysts chose to adjust for known sources
of bias, for example, by using empirical evidence or
elicited opinion on biases.22,23

In summary, between-study heterogeneity was found
to be strongly associated with the type of outcome mea-
sured in the meta-analysis, with meta-analyses of
all-cause mortality or semi-objective outcomes exhibit-
ing substantially lower heterogeneity than meta-
analyses of subjective outcomes. Heterogeneity may
also be associated with intervention comparison type,
to a lesser extent. Informative priors for heterogeneity
would be beneficial in meta-analyses including few stu-
dies, and these have been made available in this report.

In view of the important influences on heterogeneity
observed in the CDSR data set, use of an informative
prior for heterogeneity in future meta-analyses would
be entirely justifiable.

Supplementary Data
Supplementary Data are available at IJE online.
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KEY MESSAGES

� Many meta-analyses contain only a small number of studies, which makes it difficult to estimate the
extent of between-study heterogeneity.

� By analysing a large database of meta-analyses, we have identified important predictors of
heterogeneity.

� Prior distributions for heterogeneity have been constructed for use in specific topic areas. These
would be very beneficial in future meta-analyses including few studies.
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